Significance (AskiaVista)

For details of the advanced properties available for significance testing, see advanced.

In the results, significant values will be indicated by symbols:

The test allows comparison of test values with threshold values.

N= Total base

Note: it is possible to define a threshold to be 0, so that the test is not run at that threshold. For example, if you want "+" to appear at 90%, specify 0,0,90. If you only want "++" to appear at 95%, specify 0,95,0.

Counts when independent

EffInd(i,j) = Total(i) * Total(j) /
PrcInd (i,j) = EffInd(ij) /
PrcObs (i,j) = EffObs(ij) /N

(PrcObs(ij)-PrcInd(ij))

Test value =--------------------------------------------------

squared root(PrcInd(ij)*(1-PrcInd(ij))/N)

 

=> if the test value > threshold = Significant difference, upwards if the coefficient is positive or downwards if the coefficient is negative.

 

Compared to all other columns

N1 = Total(j)
N2 = N - N1

If N1 and N2 >

 
P1 = Observe(i,j) / N1
P2 = (Total(i) - Observe(i,j) ) / N2

If the standard deviation is known, we calculate 'D', which follows a normal mathematical expectation law = 0 ( p1-p2=0), and standard deviation s'd=ROOT(f*(1-f) * (1/N1+1/N2)),  where f is an estimate calculated as follows:

 

f= (p1*n1+p2*n2)/n1+n2
s'd = Squared root(f*(1-f) * (1/N1+1/N2))

f

D= ------------

s'd

 

If the standard deviation is not known, we calculate 'D', which follows a normal mathematical expectation law  p1-p2, and standard deviation sd=Squared ROOT((p1*(1-p1))/n1 + (p2*(1-p2))/n2),

(P1-P2)

Test Value = --------------------------------------------------------

             P1*(1-P1)                  P2 * (1 - P2)

 Squared Root (-----------------     +   ------------------- )

            N1                                 N2

 

=> if the test value> threshold = Significant difference, upwards if the coefficient is positive or downwards if the coefficient is negative.

 

Compared to all other rows

N1 = Total(i)
N2 = dBase - N1

If N1 an N2 >

P1 = Observe(i,j) / N1
P2 = (Total(j) - Observe(i,j) ) / N2

 

If the standard deviation is known, we calculate 'D', which follows a normal mathematical expectation law = 0 ( p1-p2=0), and standard deviation s'd=ROOT(f*(1-f) * (1/N1+1/N2)),  where f is an estimate calculated as follows:

f= (p1*n1+p2*n2)/n1+n2
s'd = ROOT(f*(1-f) * (1/N1+1/N2))

f

D= ------------

s'd

 

If the standard deviation is not known, we calculate 'D', which follows a normal mathematical expectation law  p1-p2, and standard deviation sd=Squared ROOT((p1*(1-p1))/n1 + (p2*(1-p2))/n2),

(P1-P2)

Test Value = --------------------------------------------------------

             P1*(1-P1)                  P2 * (1 - P2)

 Root (-----------------     +   ------------------- )

            N1                                 N2

 

=> if the test value> threshold = Significant difference, upwards if the coefficient is positive or downwards if the coefficient is negative.

Create your own Knowledge Base